3.749 \(\int \frac{(d x)^{7/2}}{\sqrt{a^2+2 a b x^2+b^2 x^4}} \, dx\)

Optimal. Leaf size=457 \[ -\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{\sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

[Out]

(-2*a*d^3*Sqrt[d*x]*(a + b*x^2))/(b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (2*d*(d*x)^(5/2)*(a + b*x^2))/(5*b*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (a^(5/4)*d^(7/2)*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*
Sqrt[d])])/(Sqrt[2]*b^(9/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (a^(5/4)*d^(7/2)*(a + b*x^2)*ArcTan[1 + (Sqrt[2
]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(Sqrt[2]*b^(9/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (a^(5/4)*d^(7/2)*
(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*b^(9/4)*S
qrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (a^(5/4)*d^(7/2)*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[
2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*b^(9/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

________________________________________________________________________________________

Rubi [A]  time = 0.324991, antiderivative size = 457, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 9, integrand size = 30, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.3, Rules used = {1112, 321, 329, 211, 1165, 628, 1162, 617, 204} \[ -\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}+\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}+1\right )}{\sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}} \]

Antiderivative was successfully verified.

[In]

Int[(d*x)^(7/2)/Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4],x]

[Out]

(-2*a*d^3*Sqrt[d*x]*(a + b*x^2))/(b^2*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (2*d*(d*x)^(5/2)*(a + b*x^2))/(5*b*Sq
rt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (a^(5/4)*d^(7/2)*(a + b*x^2)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*
Sqrt[d])])/(Sqrt[2]*b^(9/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (a^(5/4)*d^(7/2)*(a + b*x^2)*ArcTan[1 + (Sqrt[2
]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])])/(Sqrt[2]*b^(9/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4]) - (a^(5/4)*d^(7/2)*
(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*b^(9/4)*S
qrt[a^2 + 2*a*b*x^2 + b^2*x^4]) + (a^(5/4)*d^(7/2)*(a + b*x^2)*Log[Sqrt[a]*Sqrt[d] + Sqrt[b]*Sqrt[d]*x + Sqrt[
2]*a^(1/4)*b^(1/4)*Sqrt[d*x]])/(2*Sqrt[2]*b^(9/4)*Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4])

Rule 1112

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a + b*x^2 + c*x^4)^FracPa
rt[p]/(c^IntPart[p]*(b/2 + c*x^2)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^2)^(2*p), x], x] /; FreeQ[{a, b, c,
 d, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(d x)^{7/2}}{\sqrt{a^2+2 a b x^2+b^2 x^4}} \, dx &=\frac{\left (a b+b^2 x^2\right ) \int \frac{(d x)^{7/2}}{a b+b^2 x^2} \, dx}{\sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (a d^2 \left (a b+b^2 x^2\right )\right ) \int \frac{(d x)^{3/2}}{a b+b^2 x^2} \, dx}{b \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a^2 d^4 \left (a b+b^2 x^2\right )\right ) \int \frac{1}{\sqrt{d x} \left (a b+b^2 x^2\right )} \, dx}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (2 a^2 d^3 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a^{3/2} d^2 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a} d-\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a^{3/2} d^2 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\sqrt{a} d+\sqrt{b} x^2}{a b+\frac{b^2 x^4}{d^2}} \, dx,x,\sqrt{d x}\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (a^{5/4} d^{7/2} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}+2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{2 \sqrt{2} b^{13/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (a^{5/4} d^{7/2} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d}}{\sqrt [4]{b}}-2 x}{-\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt{d x}\right )}{2 \sqrt{2} b^{13/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a^{3/2} d^4 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}-\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{2 b^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a^{3/2} d^4 \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{\frac{\sqrt{a} d}{\sqrt{b}}+\frac{\sqrt{2} \sqrt [4]{a} \sqrt{d} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt{d x}\right )}{2 b^{7/2} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{\left (a^{5/4} d^{7/2} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} b^{13/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{\left (a^{5/4} d^{7/2} \left (a b+b^2 x^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} b^{13/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ &=-\frac{2 a d^3 \sqrt{d x} \left (a+b x^2\right )}{b^2 \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{2 d (d x)^{5/2} \left (a+b x^2\right )}{5 b \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{b} \sqrt{d x}}{\sqrt [4]{a} \sqrt{d}}\right )}{\sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}-\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}+\frac{a^{5/4} d^{7/2} \left (a+b x^2\right ) \log \left (\sqrt{a} \sqrt{d}+\sqrt{b} \sqrt{d} x+\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{d x}\right )}{2 \sqrt{2} b^{9/4} \sqrt{a^2+2 a b x^2+b^2 x^4}}\\ \end{align*}

Mathematica [A]  time = 0.091201, size = 238, normalized size = 0.52 \[ \frac{d^3 \sqrt{d x} \left (a+b x^2\right ) \left (-5 \sqrt{2} a^{5/4} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )+5 \sqrt{2} a^{5/4} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{b} \sqrt{x}+\sqrt{a}+\sqrt{b} x\right )-10 \sqrt{2} a^{5/4} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}\right )+10 \sqrt{2} a^{5/4} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{b} \sqrt{x}}{\sqrt [4]{a}}+1\right )-40 a \sqrt [4]{b} \sqrt{x}+8 b^{5/4} x^{5/2}\right )}{20 b^{9/4} \sqrt{x} \sqrt{\left (a+b x^2\right )^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d*x)^(7/2)/Sqrt[a^2 + 2*a*b*x^2 + b^2*x^4],x]

[Out]

(d^3*Sqrt[d*x]*(a + b*x^2)*(-40*a*b^(1/4)*Sqrt[x] + 8*b^(5/4)*x^(5/2) - 10*Sqrt[2]*a^(5/4)*ArcTan[1 - (Sqrt[2]
*b^(1/4)*Sqrt[x])/a^(1/4)] + 10*Sqrt[2]*a^(5/4)*ArcTan[1 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)] - 5*Sqrt[2]*a^(5
/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x] + 5*Sqrt[2]*a^(5/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/
4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x]))/(20*b^(9/4)*Sqrt[x]*Sqrt[(a + b*x^2)^2])

________________________________________________________________________________________

Maple [A]  time = 0.227, size = 239, normalized size = 0.5 \begin{align*}{\frac{ \left ( b{x}^{2}+a \right ) d}{20\,{b}^{2}} \left ( 5\,a{d}^{2}\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{2}\ln \left ({ \left ( dx+\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}+\sqrt{{\frac{a{d}^{2}}{b}}} \right ) \left ( dx-\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{dx}\sqrt{2}+\sqrt{{\frac{a{d}^{2}}{b}}} \right ) ^{-1}} \right ) +10\,a{d}^{2}\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{2}\arctan \left ({ \left ( \sqrt{2}\sqrt{dx}+\sqrt [4]{{\frac{a{d}^{2}}{b}}} \right ){\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}} \right ) +10\,a{d}^{2}\sqrt [4]{{\frac{a{d}^{2}}{b}}}\sqrt{2}\arctan \left ({ \left ( \sqrt{2}\sqrt{dx}-\sqrt [4]{{\frac{a{d}^{2}}{b}}} \right ){\frac{1}{\sqrt [4]{{\frac{a{d}^{2}}{b}}}}}} \right ) +8\, \left ( dx \right ) ^{5/2}b-40\,a{d}^{2}\sqrt{dx} \right ){\frac{1}{\sqrt{ \left ( b{x}^{2}+a \right ) ^{2}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x)

[Out]

1/20*(b*x^2+a)*d*(5*a*d^2*(a*d^2/b)^(1/4)*2^(1/2)*ln((d*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))
/(d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+10*a*d^2*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(
d*x)^(1/2)+(a*d^2/b)^(1/4))/(a*d^2/b)^(1/4))+10*a*d^2*(a*d^2/b)^(1/4)*2^(1/2)*arctan((2^(1/2)*(d*x)^(1/2)-(a*d
^2/b)^(1/4))/(a*d^2/b)^(1/4))+8*(d*x)^(5/2)*b-40*a*d^2*(d*x)^(1/2))/((b*x^2+a)^2)^(1/2)/b^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (d x\right )^{\frac{7}{2}}}{\sqrt{{\left (b x^{2} + a\right )}^{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate((d*x)^(7/2)/sqrt((b*x^2 + a)^2), x)

________________________________________________________________________________________

Fricas [A]  time = 1.59594, size = 498, normalized size = 1.09 \begin{align*} \frac{20 \, \left (-\frac{a^{5} d^{14}}{b^{9}}\right )^{\frac{1}{4}} b^{2} \arctan \left (-\frac{\left (-\frac{a^{5} d^{14}}{b^{9}}\right )^{\frac{3}{4}} \sqrt{d x} a b^{7} d^{3} - \left (-\frac{a^{5} d^{14}}{b^{9}}\right )^{\frac{3}{4}} \sqrt{a^{2} d^{7} x + \sqrt{-\frac{a^{5} d^{14}}{b^{9}}} b^{4}} b^{7}}{a^{5} d^{14}}\right ) + 5 \, \left (-\frac{a^{5} d^{14}}{b^{9}}\right )^{\frac{1}{4}} b^{2} \log \left (\sqrt{d x} a d^{3} + \left (-\frac{a^{5} d^{14}}{b^{9}}\right )^{\frac{1}{4}} b^{2}\right ) - 5 \, \left (-\frac{a^{5} d^{14}}{b^{9}}\right )^{\frac{1}{4}} b^{2} \log \left (\sqrt{d x} a d^{3} - \left (-\frac{a^{5} d^{14}}{b^{9}}\right )^{\frac{1}{4}} b^{2}\right ) + 4 \,{\left (b d^{3} x^{2} - 5 \, a d^{3}\right )} \sqrt{d x}}{10 \, b^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x, algorithm="fricas")

[Out]

1/10*(20*(-a^5*d^14/b^9)^(1/4)*b^2*arctan(-((-a^5*d^14/b^9)^(3/4)*sqrt(d*x)*a*b^7*d^3 - (-a^5*d^14/b^9)^(3/4)*
sqrt(a^2*d^7*x + sqrt(-a^5*d^14/b^9)*b^4)*b^7)/(a^5*d^14)) + 5*(-a^5*d^14/b^9)^(1/4)*b^2*log(sqrt(d*x)*a*d^3 +
 (-a^5*d^14/b^9)^(1/4)*b^2) - 5*(-a^5*d^14/b^9)^(1/4)*b^2*log(sqrt(d*x)*a*d^3 - (-a^5*d^14/b^9)^(1/4)*b^2) + 4
*(b*d^3*x^2 - 5*a*d^3)*sqrt(d*x))/b^2

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)**(7/2)/((b*x**2+a)**2)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.25957, size = 374, normalized size = 0.82 \begin{align*} \frac{1}{20} \, d^{2}{\left (\frac{10 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} a d \arctan \left (\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} + 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{b^{3}} + \frac{10 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} a d \arctan \left (-\frac{\sqrt{2}{\left (\sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} - 2 \, \sqrt{d x}\right )}}{2 \, \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}}}\right )}{b^{3}} + \frac{5 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} a d \log \left (d x + \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{b^{3}} - \frac{5 \, \sqrt{2} \left (a b^{3} d^{2}\right )^{\frac{1}{4}} a d \log \left (d x - \sqrt{2} \left (\frac{a d^{2}}{b}\right )^{\frac{1}{4}} \sqrt{d x} + \sqrt{\frac{a d^{2}}{b}}\right )}{b^{3}} + \frac{8 \,{\left (\sqrt{d x} b^{4} d^{6} x^{2} - 5 \, \sqrt{d x} a b^{3} d^{6}\right )}}{b^{5} d^{5}}\right )} \mathrm{sgn}\left (b x^{2} + a\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x)^(7/2)/((b*x^2+a)^2)^(1/2),x, algorithm="giac")

[Out]

1/20*d^2*(10*sqrt(2)*(a*b^3*d^2)^(1/4)*a*d*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b
)^(1/4))/b^3 + 10*sqrt(2)*(a*b^3*d^2)^(1/4)*a*d*arctan(-1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a
*d^2/b)^(1/4))/b^3 + 5*sqrt(2)*(a*b^3*d^2)^(1/4)*a*d*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/
b))/b^3 - 5*sqrt(2)*(a*b^3*d^2)^(1/4)*a*d*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/b^3 + 8
*(sqrt(d*x)*b^4*d^6*x^2 - 5*sqrt(d*x)*a*b^3*d^6)/(b^5*d^5))*sgn(b*x^2 + a)